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ABSTRACT 
Microscopic image examination is essential for medical diagnostics to identify anomalies using cell 
counts based on morphology. Sickle Cell Disease (SCD) is an inherited blood condition characterized 
by defective hemoglobin, leading to severe anemia and complications. Detecting sickle cells in 
blood smears is essential, but the presence of White blood cells (WBCs) and platelets often leads 
to miscounting as they are classified incorrectly as red blood cells (RBCs). This study proposed an 
approach for segmenting WBCs and platelets by resembling the human color recognition process 
to differentiate the regions for accurate identification. First, the RGB color space is converted to 
RG chromaticity to locate WBCs and platelets with high pixel chromatic variance. Parametric 
segmentation is applied to the RG chromaticity images to identify the appropriate chromaticity 
channel for segmentation based on probability distribution values. The optimal threshold values 
have been determined using Particle Swarm Optimization (PSO) by dynamically narrowing the 
search space using values obtained through manual experimentation ranging from 0.001 to 1. This 
systematic process effectively identifies and segments platelets and WBCs, ensuring that overlapping 
platelets and WBCs are accurately segmented. Compared to state-of-the-art techniques, the proposed 
approach achieved an accuracy of 96.32 %, 96.97% for sensitivity, 96.96 % for precision and 97.46% 
for F- score in the pixel-wise segmentation of WBCs and platelets.

Keywords: Chromaticity, parametric segmentation, 
particle swarm optimization, platelets, sickle cell 
disease, white blood cells 

INTRODUCTION

Sickle cell disease (SCD) is an inherited 
blood disorder characterized by abnormal 
hemoglobin. This arises when the two 
aberrant genes are inherited from both 
parents, leading to the synthesis of 
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hemoglobin S, which is mainly in charge of the development of irregular red blood cells 
(RBCs). These abnormal RBCs have difficulty carrying oxygen and get stuck in blood 
arteries, which can result in many problems, including organ damage, infections, and pain. 
Because of the significant frequency and serious health effects of hemoglobinopathies 
worldwide, SCD detection and diagnosis are essential (Alzubaidi, Fadhel, Al-Shamma et 
al., 2020). SCD national incidence rate was stable between 2000 and 2021; however, the 
number of newborns with SCD has risen by 13.7% globally due to population growth in 
the Caribbean, western, and central sub-Saharan Africa. In 2021, the number of patients 
with SCD increased by 41·4% worldwide. India accounts for 14.5% of infants born with 
SCD, approximately 42,000 per year, ranking second after sub-Saharan Africa. The quality 
of life of an individual with SCD can be improved through early diagnosis for disease 
management. Hematologists examine blood samples under a microscope for diagnosis; 
this is a time-consuming approach that is subject to errors caused by humans (WHO, 
2011). Manual blood smear analysis becomes more difficult due to a difference in cell 
sizes, shapes, boundaries, and placements, which also challenges screening for the disease. 
Recent advances in Artificial Intelligence and Machine Learning (ML) have increased 
recognition and accuracy for diagnosis. Automated equipment assists pathologists and 
medical professionals in accurately identifying anemia (Acharya & Prakasha, 2019).

Conventional Methods for SCD Identification

SCD has been classified and segmented using different image processing and machine 
learning techniques (Das et al., 2019). The Circular Hough Transform (CHT) has been 
used to differentiate between sickle cells and normal RBCs. A fuzzy inference system 
(FIS) was used together with CHT to differentiate cells and extract the red component. Cell 
identification and counting have been determined using morphological descriptors, form 
factors, and gradient-based watershed transformations. Parvathy et al. (2016) analyzed 
compactness and shape using Otsu's technique and watershed segmentation. Sharma et 
al. (2016) used marker-controlled watershed transformations to distinguish erythrocytes 
and K-nearest neighbors (KNN) for classification, whereas Acharya and Kumar (2017) 
used the K-Medoids approach for erythrocytes segmentation and classification. Neural 
networks were used by Elsalamony (2017) to classify anemia and Chy and Rahaman (2018) 
trained a Support Vector Machine (SVM) with several indicators for SCD classification. 
Many classification methods, such as SVM, Extreme Learning Machine (ELM), and KNN 
classifiers have been used to distinguish and categorize sickle cells and normal cells (Chy & 
Rahaman, 2019). Existing approaches concentrate on normal and sickle cell categorization 
and do not consider the presence of WBCs and platelets in blood smear images. WBCs can 
be misclassified as RBCs, whereas clustered platelets are often confused with sickle cells. 
Therefore, enhanced WBC and platelet extraction techniques are necessary to provide an 
accurate diagnosis.
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Deep Learning Methods for SCD Segmentation

Deep learning (DL) methods, such as Recurrent Neural Networks (RNNs) and Deep CNNs, 
are efficient in medical image data classification (Ker et al., 2017). Convolutional Neural 
Networks (CNNs) have achieved 86.34% and 87.50% accuracy in RBCs classification 
(Alzubaidi, Al-Shamma et al., 2020; Xu et al., 2017). DL models require large training 
datasets to obtain optimal results. Khalaf et al. (2017) used three RNN architectures, 
whereas Zhang et al. (2018) used a U-Net technique for RBC segmentation. The pre-trained 
InceptionV3 model extracted 2048 deep features for sickle cell identification (Alagu et al., 
2023). An enhanced wrapper-based feature selection approach employing multi-objective 
binary grey wolf optimization (MO-BGWO), KNN, and SVM was utilized to classify 
features. The SVM classifier achieved 96% accuracy, which increases system performance. 
Deep learning techniques depend on well-chosen models and are affected by cell size, color, 
and form differences. Recent developments in deep learning have shown its potential to 
address these issues by accurately differentiating normal and sickle-shaped cells based 
on their features. However, these techniques have difficulty counting sickle and healthy 
erythrocytes because the present studies do not focus on removing platelets and WBCs 
from sickle blood smear images, which is essential for cell counting. Deep learning needs 
the annotation images for the segmentation model, but the dataset does not contain the 
annotation images. Therefore, the WBCs and platelets for automatic segmentation need 
to be annotated using a DL-based model for the enhanced process.

Conventional Methods for WBC and Platelets Segmentation

In medical image processing, identifying WBCs is an important area of study. Several 
researchers have investigated and developed methodologies that leverage deep-learning 
models and image-processing algorithms to improve WBC detection and classification 
(Alzubaidi, Fadhel, Oleiwi et al., 2020). WBC segmentation has been studied using several 
approaches, each with its merits and cons. Certain methods concentrate on segmenting the 
nucleus or cell (Tosta et al., 2015); however, other methods consider segmenting the nucleus 
and cytoplasm (Sarrafzadeh & Dehnavi, 2015). Threshold-based segmentation remains 
one of the easiest and most popular approaches, whether alone or in combination with 
other strategies. Makem and Tiedeu (2020) employed HSV and CMYK color space color 
components fused for WBC nuclei identification using adaptive fusion based on principal 
component analysis. (HSV and CMYK color space color components fused for WBC nuclei 
detection using adaptive fusion based on principal component analysis. Garcia-Lamont et 
al. (2021) proposed a method for segmenting WBC nuclei using high chromatic variation 
in hue components and classifying the cells using unsupervised neural networks. WBC 
is segmented based on human color discrimination through principal component analysis 
in HSV, RGB, and L*a*b* spaces which contain chromatic variation by hue extraction 
without complex mathematical computations (García‐Lamont et al., 2022). 
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Clustering-based segmentation is used to extract WBCs from microscopic images. 
Tavakoli et al. (2021) proposed a method for segmenting nuclei that combines a balanced 
color technique with Otsu's thresholding algorithm. The convex hull of the nucleus was then 
used to detect the cytoplasm, and the SVM was used for classification. Kaur et al. (2016) 
developed an automated platelet counting method that employs the CHT on microscopic 
blood images. Their approach was based on platelet size and shape properties, resulting in 
a 96% accuracy. Cruz et al. (2017) proposed an image analysis framework for segmenting 
and counting the complete blood count (CBC). Their approach achieved more than 90% 
accuracy by combining HSV thresholding, linked component identification, and statistical 
analysis of microscopic blood images. Traditional approaches fail to achieve adequate 
results due to their variable lighting conditions. State-of-the-art approaches predominantly 
concentrate on segmenting WBCs and platelets separately rather than combining them in 
the same study. Traditional processes have limitations and highlight the requirement for 
improved methodologies to address such challenges with superior precision. Therefore, 
an individual approach for segmenting WBCs and platelets from blood smear images is 
essential for improving the precision and effectiveness of medical image analysis.

Deep Learning-based Methods for WBC and Platelets Segmentation

Deep learning (DL) based segmentation can be classified into instance and semantic 
segments. Instance segmentation detects individual cells, whereas semantic segmentation 
uses an identical mask for each region of interest (ROI) in a single image to differentiate 
objects based on pixel-level categorization. The most commonly used network for 
classifying and segmenting images is CNN. It uses a deep CNN with multiple variables 
trained on a larger dataset to obtain effective outcomes with deep learning models. Deep 
learning models are difficult to train on medical datasets because of limited data size; 
therefore, pretrained models are often used to overcome this limitation. Khouani et al. 
(2020) utilized various CNN architectures for segmenting WBC, including VGG-16, 
VGG-19, ResNet-50, ResNet-101, and Inception-v3. ResNet-50, optimized with the 
Adam optimizer, achieved the highest test accuracy of 95.73%. CNN and pre-trained 
CNN models are utilized to classify and segment WBCs and platelets process (Anand et 
al., 2024; Ozcan et al., 2024; Saidani et al., 2024). Ground-truth annotations are essential 
for the accurate and complete evaluation of deep-learning-based segmentation techniques. 
Thus, the assessment is based on how precisely and effectively the model identifies regions 
of interest in medical images. However, the SCD dataset does not contain annotations for 
WBCs and platelets, making deep learning for segmentation inadequate for this application. 
This study introduces a method for obtaining accurate ground-truth annotations of WBCs 
and platelets, which enables effective analysis to assist the segmentation process.
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Optimization-based Approaches for Medical Image Segmentation

Optimization-based techniques have gained significant attention for enhancing medical-
image segmentation (Wang et al., 2021; Farshi et al., 2020). These methods aim to optimize 
and fine-tune the segmentation algorithms (Shang et al., 2020). Optimization techniques 
increase the accuracy and efficiency of segmentation algorithms (Shi et al., 2023; Khosla 
& Verma, 2023). Existing studies examine classical optimization, metaheuristics, and 
machine learning-based techniques (Narayana et al., 2022; de Albuquerque et al., 2020; 
Shehab et al., 2020) with a focus on parameter modifications to minimize segmentation 
issues and enhance overall performance. PSO is a swarm intelligence-inspired optimization 
approach widely used in image analysis (Zhang & Lim, 2020; Mandave & Patil, 2023). 
PSO is effective at addressing complicated, multidimensional problems (Eisham et al., 
2023) and is used for feature selection (Kavitha & Chellamuthu, 2019), image registration 
(Sarvamangala & Kulkarni, 2019), segmentation (Kate & Shukla, 2020; Chakraborty et 
al., 2019), classification (Singh et al., 2025) and object tracking (Öztürk et al., 2020). 
PSO effectively examines search regions while reducing local optima, making it a great 
selection for image analysis. PSO enhances medical image segmentation by determining 
optimal image segments based on global and local features (Vijh et al., 2020; Shehanaz et 
al., 2021). The versatility and ability of PSO to solve issues make it an excellent tool for 
image-processing researchers (Nayak et al., 2023; Dhal et al., 2019). The study proposed 
by de Albuquerque et al. (2020) expanded the significance of PSO to medical image 
segmentation by employing its ability to navigate complicated search areas. PSO is well 
suited for dealing with medical imaging difficulties such as noise, uneven lighting, and 
complex structures (Guo et al., 2023). 

The proposed study uses PSO to improve the accuracy of medical image segmentation, 
primarily for WBCs and platelets in blood smear images. The study improves segmentation 
by combining PSO and color space approaches. The contributions of this study are as 
follows:

 • Identification of a suitable color space for WBCs and platelets segmentation in 
peripheral smear images

 • WBCs and platelets were methodically detected using the RG chromaticity approach, 
with target regions distinguished using parametric segmentation

 • Determine the best chromaticity channels for WBC and platelet identification by 
conducting a comparative examination of the channels

 • Particle Swarm Optimization (PSO) was used to construct probability distribution 
values and optimize the search space for segmentation

 • Accuracy of 96.32% on the erythrocyteIDB dataset, demonstrating the efficient results 
for segmentation
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MATERIAL AND METHOD

The proposed approach segmented the platelets and WBCs by combining PSO with image 
chromaticity. It determined a significant color space, identified regions similar to those 
of WBCs and platelets, selected the optimal chromaticity channel for segmentation, and 
applied PSO-based threshold optimization. Figure 1 shows the entire process of segmenting 
WBCs and platelets.platelets. 

 

      
Figure 1. Overview of the Proposed PSO-based segmentation approach  

ErythrocytesIDB
1 Dataset 

Color space selection 

Identification of WBCs 
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Parametric segmentation 
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Figure 1. Overview of the Proposed PSO-based segmentation approach for WBCs and platelets 
segmentation

Identification of Suitable Color Space for WBC and Platelets Detection 

This study employed the ErythrocytesIDB1 dataset for a comprehensive analysis. The 
color space of an image is primarily selected for the segmentation of WBC and platelets. 
This has different chromatic properties from RBCs. However, selecting the appropriate 
color space is essential to reduce the influence of the color space for WBC and platelet 
identification. Blood smear images have color variations because of the staining, lighting 
conditions, and external characteristics (Fitri et al., 2017). The images were reduced to 
256 * 256 to standardize the image analysis and the color range was normalized using the 
min-max method (Juliet et al., 2015; Patro et al., 2015). Noise in the images was eliminated 
using a nonlocal mean (NLM) filter which was selected for its ability to reduce Gaussian 
noise (Buades et al., 2005). Based on the literature, RGB, HSV, and Lab color spaces were 
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employed to identify and segment WBCs and platelets. Hue saturation value (HSV) and 
Lab color spaces are often used for image analysis; however, RGB (red, green, and blue) 
is still widely used in digital images because of its correspondence with human perception. 
Figure 2 shows an image of the different color spaces affecting blood cells.

cells. 

 

 

 

 

 

 

 

   
(a) (b) (c)

Figure 2. Image representation in different color spaces. (a) RGB color space image; (b) HSV color space 
image; (c) Lab color space image

WBCs and platelets differ in staining characteristics from RBCs, and it was used to 
differentiate between them. WBCs typically have a pink to purple color because of their 
nuclei while platelets are smaller with purple color due to the cytoplasmic granules (Imron 
& Fitri, 2019). Purple staining in the smear images differentiates WBCs and platelets in 
RGB color space 2(a), enabling accurate identification across numerous areas. WBCs and 
platelets are difficult to identify in HSV color space 2(b) because the color regions are 
not easily distinguished from the human eye. This limitation affects the identification of 
sickle cells because it affects RBC texture. Similarly, identification is difficult in Lab color 
space 2(c) because of the distortion of the background hues. The proposed technique uses 
the RGB color space to identify platelets and WBCs in smear images by maintaining the 
shapes and textures of the RBCs.

Identification of WBCs and Palettes from Blood Smear Images 

Ground truth annotations are required for segmentation tasks to accurately identify regions. 
However, labeled data are unavailable in this study; therefore, WBC and platelet areas 
need to be identified prior to segmentation. The RGB color space was selected for such 
purposes because it is well suited for discriminating between those regions; however, 
there are limitations in the representation of luminance and brightness, which affects 
the analysis. This limitation was addressed by converting the RGB color space into a 
chromaticity format. These chromatic characteristics were separated from the intensity, 
mimicking human analysis. This is because chromaticity is independent of intensity, as 
demonstrated by the CIE 1931 xy chromaticity diagram (Sharma, 2017) that converts 
colors into 2D chromatic coordinates. Luminance-normalized images were determined 
by normalizing the RGB value to provide (x, y) coordinates on the chromaticity diagram, 
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representing decreasing brightness. The red (r) and green (g) channels are normalized for 
RG chromaticity conversion using Equations 1, 2, and 3.channels are normalized for RG chromaticity conversion using Equations 1, 2, and 3. 

r =
R

(R + G + B)
                        (1) 

g =
G

(R + G + B)
                               (2)                            

R + G + B = 1                                          (3)              
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channels are normalized for RG chromaticity conversion using Equations 1, 2, and 3. 
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The normalized red chromaticity component r removes the impact of brightness, 
whereas the normalized green chromaticity component g provides color as a relative 
proportion rather than an absolute intensity. Equation 3 sums R, G, and B as the overall 
intensity, reducing by removing illumination variations, enabling r and g to accurately 
express chromaticity and minimize dimensionality while maintaining the critical aspects 
of color (r and g). RG chromaticity separates chromaticity information, which improves 
color analysis and visual perception, allowing for the better identification of WBCs and 
platelets. Figure 3 shows the chromaticity distribution of an image, where the source 
image and chromaticity diagram of the source images are displayed in 3(a) and 3(b), and 

WBCs and platelets, which enables accurate differentiation. 

 
Figure 3. Chromaticity distribution and mapping of an image: (a) WBC and platelets highlighted in  

  
(a) (b) 

(c) (d) 

Figure 3. Chromaticity distribution and mapping of an image: (a) WBC and platelets highlighted in pink to 
purple color in RGB color space; (b) Chromaticity of RGB color space; (c) Chromaticity map of RGB color 
space; (d) RG chromaticity map
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the chromaticity map and RG chromaticity image are shown in 3(c) and 3(d), respectively. 
Algorithm 1 entails finding the target regions based on the RG Chromaticity pixel density 
distribution. The RG chromaticity diagram provides significant chromatic variation in 
WBCs and platelets, which enables accurate differentiation.

Parametric Segmentation Approach for WBC and Platelets Segmentation

This study identified and segmented WBCs and platelets from blood smear images using 
a parametric segmentation technique (Zhou & Liao, 2022). Because intensity-based 
thresholding approaches are extensively used for segmentation, the proposed methodology 
is based on chromatic characteristics. Therefore, standard threshold values are not 
particularly beneficial. The PS approach divides target areas into a binary mask by utilizing 
the optimal distribution value. Determining an appropriate threshold value is difficult 
since different distribution values could provide a binary mask separating foreground 
and background areas. The PS approach uses a Gaussian distribution to detect WBCs and 
platelets from RG chromaticity images by concentrating on the region of interest where 
pixels show a significant degree of chromatic variation.

Algorithm 1: Identification of WBCs and platelets using RG chromaticity

Input: rgb_image
(height, width, channels) = image_shape(rgb_image)
r_chromaticity [height, width]
g_chromaticity [height, width]
Chromaticity_map [height, width]
for y from 0 to height 1
     For x from 0 to width -1, as follows:
     (R, G, B) = rgb_values (rgb_image, y, x)
         sum = R + G + B 
         r = R/sum
         g =G/sum
         r_chromaticity [y, x] = r
         g_chromaticity [y, x] = g
         rg_value = r + g 
         chromaticity_map [y, x] =rg value 
return 
Output: chromaticity_map 

The statistical parameters mean (μ) and standard deviation (σ) were used to calculate 
the pixel chromatic variance values to identify the target region. This indicates the average 
and variance of pixels scattered in a Gaussian distribution. These statistical characteristics, 
which include μ and σ, are explained by Equations 4, 5, and 6. The Gaussian distribution 
applied for segmentation is illustrated in Equation 7, which also explains how the 
correlations between the R and G chromaticity channels at each pixel determine which 
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colors combine. The equation is applied to the RG, R, and G chromaticity channels to 
identify which chromaticity channels are associated with WBCs and platelets.

the RG, R, and G chromaticity channels to identify which chromaticity channels are associated with 

WBCs and platelets. 
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The mean pixel intensity μ and the variation around the mean define the variance σ2 
and standard deviation σ of the target patches. The variance 𝜎𝜎2  pixel intensities indicate 
the distribution of values within the target region. Each pixel-intensity 𝑝𝑝𝑐𝑐   inside the patches 
includes all pixels in image N. 

𝑃𝑃(𝑐𝑐) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑝𝑝 �−

(𝑐𝑐 − 𝜇𝜇)2

2𝜎𝜎2 �                             [7]

The Gaussian distribution indicating the probability of the intensity P(c) corresponds 
to the WBCs and platelet color ranges. The Gaussian function's variable c indicates the 
intensity of a pixel at specific positions within the image. Probabilistic distribution values 
for RG chromaticity, as well as individual R and G chromaticity channels, were calculated 
to determine which chromaticity channel was most suitable for the segmentation process. 
Determining a significant chromaticity channel for WBC and platelet segmentation is 
difficult because of the variance in illumination and staining of the image. These differences 
make it difficult and time-consuming to accurately determine the optimal threshold 
value for segmentation. Furthermore, the high pixel levels of WBCs, platelets, and size 
made it difficult to manually determine the binary masking values. An extensive manual 
evaluation selected distribution values ranging from 0.001 to 1. It accurately recognizes 
WBCs and platelets while providing no false positives by not detecting RBCs. However, 
the variations in lighting and illumination connected to the images make it difficult to 
determine an optimal threshold for every image. Therefore, optimization is required to 
identify the optimal thresholds for the various images. Algorithm 2 provides a complex 
approach that determines the best chromaticity channel and enables improved WBC and 
platelet segmentation, subject to imaging scenarios.
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Algorithm 2: Identification of Optimal chromaticity channel for segmentation using Parametric 
segmentation approach

Input: RG chromaticity image
1. Compute μ, 𝜎𝜎2  and σ using Equations 4, 5 and 6
2. Create a probability map using Equation 7
3. Apply a threshold to identify target region:
  Threshold = probability map>Threshold
      for each channel (RG, R, G):
           Calculate μ, 𝜎𝜎2 , σ and probability map 
Apply a threshold to identify areas with the desired color range
End
Output: Best chromaticity channel for segmentation

PSO-based WBCs and Platelets Segmentation

The optimal threshold was determined using the Particle Swarm Optimization (PSO) 
(Kennedy & Eberhart, 1995). It adequately searches the parameter space using a swarm 
of particles implemented with values from manual segmentation and thresholds ranging 
from 0.001 to 1. The threshold values are iteratively modified by analyzing the search space 
and optimizing their distribution by altering the position and velocity. The position of each 
particle shows the threshold values and the aim is to determine a set of ideal threshold 
values that increases the segmentation accuracy. With a population size of 100, each particle 
represents a candidate solution determined by its personal best position, pbest; the global 
best position, gbest; and a stochastic component indicated by two equally distributed 
factors, φ₁ and φ₂. Equation 8 demonstrates the updates in position and velocity. In this 
equation, 𝑣𝑣𝑖𝑖(𝑡𝑡) 𝑒𝑒𝑖𝑖(𝑡𝑡) 𝐶𝐶1 𝐶𝐶2  𝜑𝜑1 𝜑𝜑2   indicates the velocity of particle i at time t and 𝑣𝑣𝑖𝑖(𝑡𝑡) 𝑒𝑒𝑖𝑖(𝑡𝑡) 𝐶𝐶1 𝐶𝐶2  𝜑𝜑1 𝜑𝜑2   is the location of the 
particle. The inertia weight ω (0.729) determines the prior velocity's contribution to the 
current update, whereas 𝑣𝑣𝑖𝑖(𝑡𝑡) 𝑒𝑒𝑖𝑖(𝑡𝑡) 𝐶𝐶1 𝐶𝐶2  𝜑𝜑1 𝜑𝜑2   and 𝑣𝑣𝑖𝑖(𝑡𝑡) 𝑒𝑒𝑖𝑖(𝑡𝑡) 𝐶𝐶1 𝐶𝐶2  𝜑𝜑1 𝜑𝜑2   (1.4944) are cognitive and social factors, respectively, 
directing the particle to its own best and global best places. The random values 𝑣𝑣𝑖𝑖(𝑡𝑡) 𝑒𝑒𝑖𝑖(𝑡𝑡) 𝐶𝐶1 𝐶𝐶2  𝜑𝜑1 𝜑𝜑2   and 

𝑣𝑣𝑖𝑖(𝑡𝑡) 𝑒𝑒𝑖𝑖(𝑡𝑡) 𝐶𝐶1 𝐶𝐶2  𝜑𝜑1 𝜑𝜑2   provide variations in the search process, making it more uncertain and allowing a 
more comprehensive exploration of the solution space. The position update in Equation 9 
directs the particle to a new location based on its velocity. The location denotes a potential 
threshold value, and the velocity controls how much it is altered throughout each iteration.

𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝜔𝜔𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝐶𝐶1𝜑𝜑1�𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡(𝑡𝑡) − 𝑒𝑒𝑖𝑖(𝑡𝑡)� + 𝐶𝐶2𝜑𝜑2�𝑔𝑔𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡(𝑡𝑡) − 𝑒𝑒𝑖𝑖(𝑡𝑡)� 

 x𝑖𝑖(𝑡𝑡 + 1) = x𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1)                                    𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝜔𝜔𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝐶𝐶1𝜑𝜑1�𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡(𝑡𝑡) − 𝑒𝑒𝑖𝑖(𝑡𝑡)� + 𝐶𝐶2𝜑𝜑2�𝑔𝑔𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡(𝑡𝑡) − 𝑒𝑒𝑖𝑖(𝑡𝑡)� 

 x𝑖𝑖(𝑡𝑡 + 1) = x𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1)                                    

 [8]

𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝜔𝜔𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝐶𝐶1𝜑𝜑1�𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡(𝑡𝑡) − 𝑒𝑒𝑖𝑖(𝑡𝑡)� + 𝐶𝐶2𝜑𝜑2�𝑔𝑔𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡(𝑡𝑡) − 𝑒𝑒𝑖𝑖(𝑡𝑡)� 

 x𝑖𝑖(𝑡𝑡 + 1) = x𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1)                                     [9]

The optimization approach was designed to differentiate between the fitness landscape's 
global optimum and the local extrema. The peak fitness function z in Equation 10 measures 
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the accurate segmentation of a particle. The function has three exponential elements that 
address the essential factors that affect the search space. It examines particle locations by 
calculating a value that indicates the spatial alignment to optimize the threshold value. 

𝑧𝑧 = 3 . (1 − 𝑒𝑒)2 exp(−𝑒𝑒2 − 𝑦𝑦 + 12 − 10 �
𝑒𝑒
5
− 𝑒𝑒3 − 𝑦𝑦5� 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑒𝑒2 − 𝑦𝑦2) −

1
3
𝑒𝑒𝑒𝑒𝑝𝑝(−(𝑒𝑒 + 1)2 − 𝑦𝑦2)  

𝑧𝑧 = 3 . (1 − 𝑒𝑒)2 exp(−𝑒𝑒2 − 𝑦𝑦 + 12 − 10 �
𝑒𝑒
5
− 𝑒𝑒3 − 𝑦𝑦5� 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑒𝑒2 − 𝑦𝑦2) −

1
3
𝑒𝑒𝑒𝑒𝑝𝑝(−(𝑒𝑒 + 1)2 − 𝑦𝑦2)  [10]

The first exponential term uses decay and polynomial functions to identify regions of 
interest and calculate the threshold value. The second term improves the complexity by 
considering the interactions between the x and y coordinates, which helps refine the search 
in more complex areas. The third term addresses the boundary effects in the search space, 
which increases the reliability of the fitness measure. The output of the peak fitness function 
accurately identifies the swarm to the optimal areas and modifies the threshold values for 
improved segmentation performance. Algorithm 3 outlines the process of determining 
the optimal threshold value using PSO. Finally, by averaging the threshold values across 
iterations, the particle swarm converges to the optimal feasible set of segmentation accuracy. 
The optimal threshold values were 0.87, 0.68, 0.91, and 0.74, increasing the segmentation 
performance by accurately distinguishing white blood cells, platelets, and RBCs.

Algorithm 3: PSO-based threshold value selection process

Initialize particles:
For each particle i:
    Initialize position x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖    and velocity x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖    in the search space [0.001, 1]
     Evaluate fitness value f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   ) using eq (10)
    Set pbest = x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   , pbestFitness = f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   )
    If f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   ) is better than global best:
         Set gbest = x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   , gbestFitness = f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   )
         Set ω = 0.729,  𝜑𝜑1 = 1.4944, 𝜑𝜑2  = 1.4944,  𝜑𝜑1 = 1.4944, 𝜑𝜑2  = 1.4944
 For each particle i:
       Calculate fitness value f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   ) using Equation 10
       If f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   ) is better than particle's personal best:
          Update personal best:
          Set pbest = x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   , pbestFitness = f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   )
      If f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   ) is better than global best:
         Update global best:
         Set gbest = x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   , gbestFitness = f (x𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖   )
 For each particle i:
        random numbers r1 and r2 distributed in [0, 1]
        Update velocity:
        Update position:
        Use the final gbest as the optimized value
Output: Optimal value for detection
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RESULTS AND DISCUSSION

The identified and segmented WBCs and platelets were analyzed qualitatively and 
quantitatively. The analysis employed several quantitative analytic measures, including 
accuracy, precision, sensitivity, specificity, and F-score.

Dataset Description 

Segmentation analysis was performed using sickle cell smear images from the 
ErythrocytesIDB1 standard database. The blood samples were taken from SCD patients 
and are available at https://erythrocytesidb.uib.es/. The dataset contains labeled samples 
characterized by cell morphology as circular, elongated, and other cells. The dataset 
contained 196 full-field images of platelets, WBCs, and RBCs. In particular, seven images 
were removed from the database due to imperfections, variation in staining and blurring, 
whereas 189 images were employed in this study.

Identification of WBC and Platelets Using Chromaticity Feature

RGB color space determines the WBC and platelet regions from blood smear images by 
converting them into RG chromaticity. Each pixel in the RG chromaticity image is examined 
to identify the most desirable chromaticity channel for the WBCs and platelet regions. 
The chromaticity distribution in Figure 4 helps to determine the WBCs and platelets for 
segmentation. Figure 4(a) displays the source image in the RGB color space, while Figure 
4(b) shows RG chromaticity density as a Hexbin map. This map is divided into hexagonal 
bins, and colors indicate the number of pixels. In contrast, the X and Y axes indicate the 
spatial distributions of red and green chromaticity channels. Higher color density impacts 
higher color intensity or darkness, whereas lower color sparsity controls higher color 
illumination or brighter color. This visualization helps recognize color distribution patterns 
and identify prominent image color regions.
regions. 

 

 
Figure 4. Pixel Distribution of RG chromaticity image. (a) Original image; (b) Hexbin Representation of RG 

Chromaticity Distribution in the Smear Image 

 

(a) (b) 

Figure 4. Pixel distribution of RG chromaticity image. (a) Original image; (b) Hexbin representation of RG 
chromaticity distribution in the smear image
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Figure 5 illustrates the density of the pixel distribution in the R and G chromaticity 
channels for determining WBCs and platelet regions. Figure 5(a) shows the R chromaticity 
channel with lower pixel density values than the G chromaticity channel in Figure 5(b). 
The G chromaticity channel exhibited a broader range of pixel density values, extending 
at both high and low densities. In contrast, the maximum pixel distribution was observed 
in the G chromaticity channel. The heat map, as shown in Figure 6, provides a graphic 
representation of the association between red and green components for analyzing each 
channel of RG chromaticity.

 
Figure 5. Distribution of chromaticity pixels in the R and G Channels. (a) pixel distribution of R chromaticity 

channel; (b) pixel distribution of G chromaticity channel  

 
Figure 6. Visualization of RG Chromaticity Heatmap for Target Region Extraction. (a) pixel distribution of RG 

chromaticity (b) pixel distribution of R chromaticity (c) pixel distribution of G chromaticity 

  

(a) (b) 

(a) (c) (b) 

Figure 5. Distribution of chromaticity pixels in the R and G Channels. (a) pixel distribution of R 
chromaticity channel; (b) pixel distribution of G chromaticity channel 

 
Figure 5. Distribution of chromaticity pixels in the R and G Channels. (a) pixel distribution of R chromaticity 

channel; (b) pixel distribution of G chromaticity channel  

 
Figure 6. Visualization of RG Chromaticity Heatmap for Target Region Extraction. (a) pixel distribution of RG 

chromaticity (b) pixel distribution of R chromaticity (c) pixel distribution of G chromaticity 

  

(a) (b) 

(a) (c) (b) 

Figure 6. Visualization of RG Chromaticity Heatmap for Target Region Extraction. (a) pixel distribution of 
RG chromaticity (b) pixel distribution of R chromaticity (c) pixel distribution of G chromaticity

Figure 6(a) shows the RG chromaticity heatmap, while Figures 6(b) and 6(c) display 
the R and G chromaticity channels, respectively. This examination identified the R and G 
chromaticity channels as prominent features for identifying WBCs and platelets. These 
specific areas were retrieved and utilized throughout the segmentation process to identify 
the target region from the image.

Identification of Optimal Chromaticity Channel for Segmentation

As a result, the WBC and platelets were identified using RG chromaticity, which were 
considered ground truth images. RG chromaticity and its separate color channels, R and G, 



1647Pertanika J. Sci. & Technol. 33 (3): 1633 - 1660 (2025)

Enhanced White Blood Cell and Platelet Segmentation: A Particle Swarm

were applied to the parametric segmentation method to identify accurate color channels for 
segmentation. Figure 7 displays the results, where 7(a) displays the target region retrieved 
by the chromaticity map. At the same time, 7(b) shows the detection of the regions using 
RG chromaticity, 7(c) displays the R chromaticity channel that detects WBCs, platelets, 
and RBC cells, and 7(d) shows the G chromaticity channel, which accurately recognizes 
the WBCs and platelet regions. The findings demonstrate that RG chromaticity is inefficient 
for detecting the target regions. In contrast, the R chromaticity channel is limited to the 
nuclei of WBCs and platelets and detects the RBCs with a bright color.

 
Figure 7. Detection of WBCs and Platelets using RG Chromaticity and separate R and G chromaticity. (a) RG 
chromaticity map; (b) Parametric segmentation in RG  

 
 (a) 

(d) (c) 

(b) 

Figure 7. Detection of WBCs and Platelets using RG Chromaticity and separate R and G chromaticity. (a) 
RG chromaticity map; (b) Parametric segmentation in RG chromaticity; (c) Parametric segmentation in R 
chromaticity channel; (c) Parametric segmentation in G chromaticity channel

However, the G chromaticity channel highlights WBCs and platelets in the smear 
image, effectively suppressing other cells by minimizing the impact of illumination and 
lighting conditions. Based on the examination findings, the G-chromaticity channel was 
more effective for segmentation.

Identification of Optimal Threshold Value Using PSO

Identifying appropriate threshold values for segmenting WBCs and platelets across various 
staining images is difficult. Manual segmentation is applied in RG chromaticity and 
separate R and G channels to determine the appropriate chromaticity channel for WBCs 
and platelet segmentation. For manual segmentation, the distribution value ranges were 
selected from 0.001 to 1 and were randomly applied to identify the appropriate channel 
and visual representation, as shown in Figure 8. 
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Figure 8. Target region (WBCs and Platelets) binary masked by RG  

 

(a) (c) (b) (d) 

Figure 8. Target region (WBCs and Platelets) binary masked by RG chromaticity and R and G separate 
channels. (a) Parametric segmentation of WBC and platelets using G chromaticity channel; (b) Target 
regions detection using R chromaticity channel; (c) Target regions detection using G chromaticity channel; 
(d) Target regions detection using RG chromaticity channel

Figure 8 displays the experimental results for determining the RG chromaticity channel 
for WBCs and platelet segmentation using a manual threshold of 0.01. Figure 8(a) shows 
the targeted region of the G chromaticity image, whereas the regions segmented by the 
R, G, and RG chromaticity channels are presented in 8(b), 8(c), and 8(d). The findings 
show that the R chromaticity channel is highly sensitive to the WBCs nucleus and platelet 
cells, as shown by the yellow box in 8(b). However, it also identifies the color of RBCs 
while distinguishing each cell. The G chromaticity channel segments the nucleus and 
cytoplasm of WBCs and platelets while excluding RBCs alone, as shown in 8(c). The 
RG chromaticity in 8(d) shows the detection of WBCs and platelets and the presence of 
certain RBCs enclosed within the highlighted red box. These findings demonstrate that the 
G chromaticity channel can detect WBCs and platelets in the images. However, the manual 
method is time-consuming and labor-intensive for finding the appropriate threshold value 
for segmentation. The experimental results of manual segmentation using RG, R, and G 
chromaticity are shown in Table 1. The manual threshold value of 0.01 is applied for the 
segmentation process, which fails the segmentation. This limitation is solved using the 
PSO algorithm by determining the optimal threshold values of 0.68, 0.74, 0.87 and 0.91.

Accurate detection of WBCs and platelets in smear images was achieved using search 
space optimization, using the range from 0.001 to 1 probability distribution as a search 
space in the optimization process with the peak’s fitness function. From the optimized 
search space, the threshold values of 0.68, 0.74, 0.87 and 0.91 were achieved for different 
staining and illuminated images. The segmentation method successfully segmented the 
target regions using manual and optimized techniques with the G chromaticity channel. 
Figure 9 shows the segmentation results with a manual and optimal threshold value of 
0.01 and 0.87, respectively.

Figure 9(a) shows the source images, and 9(b) shows the target region identified by the 
G chromaticity channel. Segmentation of platelets and WBCs using manual and optimized 
threshold values is shown in 9(c) and 9(d), respectively. The segmentation results in Figure 
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9(c) demonstrate that the manual threshold-based technique recognizes only the nuclei of 
WBCs. In contrast, the cytoplasmic regions are inadequately segmented, as highlighted 
by the red box. As shown in the yellow box, platelet segmentation was also ineffective for 
smaller platelets with unclear boundary regions. Figure 9(d) depicts the implementation 
of an enhanced threshold for segmentation utilizing a Particle Swarm Optimization-based 

Table 1 
Segmentation of WBC and platelets using RG chromaticity, R and G chromaticity channels with 0.01 
threshold value

Source Image R Chromaticity 
Channel

G Chromaticity 
Channel

RG Chromaticity

respectively. 

 

 
Figure 9. WBC and platelet detection are done using  

(a) (b) (c) (d) 

 
  

 

Figure 9. WBC and platelet detection are done using manual and optimal thresholds. (a) Blood smear 
source image; (b) Parametric segmentation of WBC and platelets using G chromaticity channel; (c) Target 
region detection using a manual threshold value of 0.01 in G chromaticity channel; (d) Target region 
detection using an optimized threshold value of 0.87 in G chromaticity channel
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approach, resulting in significant improvements in results. The red box indicates that 
both the nucleus and the cytoplasm were detected. The yellow box depicts the optimal 
threshold value of 0.87, improving the segmentation of small and large platelets over 
manual thresholding.

The results indicated the significance of selecting accurate threshold values by 
emphasizing the limitations of manual methods for WBCs and platelet segmentation. The 
optimization process improved the accuracy and effectiveness of the WBCs and platelet 
detection approach by segmenting the nucleus and cytoplasm of WBCs and large and 
small pixels of platelets without including RBCs for the segmentation. It emphasized the 
significance of the optimized threshold values. The experimental segmentation results 
using the manual and optimal threshold value are demonstrated in Table 2. The table 
shows the source images and target regions acquired from the G chromaticity space using 
manual and optimal threshold values for the segmentation results. Manual segmentation 
employed 0.01, 0.05, and 0.01 thresholds for each image. In comparison, a PSO-based 
technique provided optimal thresholds of 0.87 for the first and third images and 0.74 for 
the second image. Threshold modifications are caused by a variation in lighting conditions 
between the first and third images, including the second image, which affects the selection 
of optimal threshold values.

Table 2 
Comparison of G chromaticity segmentation using manual and optimal threshold values

Source Image G chromaticity space Segmentation using 
Manual threshold 

values 

Segmentation using 
Optimal threshold 
values from PSO
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Manual segmentation effectively detects the region of interest and excludes RBCs; 
however, it has limitations in segmenting small pixel-sized sections and identifying cell 
borders and edges. The PSO-based technique is superior because it employs optimal 
threshold values for efficiently segmenting large and small pixel-sized regions without 
losing their edges, resulting in increased segmentation precision. The segmentation results 
demonstrate that the PSO approach effectively selects threshold values. This method enables 
precise segmentation of WBCs and platelets by employing ideal threshold values of 0.68, 
0.74, 0.87, and 0.91 for distinct images under diverse lighting and staining conditions.

Quantitative Analysis

In quantitative analysis, pixel-wise binary segmentation is examined by comparing 
segmented images with their ground truth, which is identified by chromaticity variance 
and distinctive features of WBCs and platelets in microscopic images (Imron et al., 2019). 
The quantitative measures used for analysis included accuracy (Acc), specificity (Spe), 
sensitivity (Sen), precision (Pre), and F-score. Here, specificity determines how accurately a 
background is segmented where RBCs are considered the background; precision measures 
how accurately the images are segmented by ensuring that background (RBCs) pixels are 
not incorrectly classified as WBC or platelets. The sensitivity indicates the accuracy of the 
segmented images by ensuring that WBC and platelet pixels have been correctly recognized 
and not mistakenly classified as background (RBCs). The computations for these findings 
are based on Equations 11 to 15. The pixel-wise categorization of True Positives (TP), False 
Negatives (FN), False Positives (FP), and True Negatives (TN) is summarized in Table 3.   
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Table 3 
Classification of WBC and platelets pixel segmentation

Metrics Ground truth Segmented as
TP
FP
TN
FN

WBCs and Platelets
Background (RBCs)
Background (RBCs)
WBCs and Platelets

WBCs and Platelets
WBCs and Platelets
Background (RBCs)
Background (RBCs)

Table 4 presents the state-of-the-art techniques for segmenting WBC and platelets. 
This comparative study focused on chromatic-feature-based approaches. The PCA-based 
adaptive fusion of HSV and CMYK (Makem & Tiedeu, 2020) correctly recognizes the 
nucleus area of WBCs but fails to distinguish the cytoplasm and small platelet pixels. PCA 
fusion with chromatic features from RGB, HSV, and L*a*b* color space (Garcia-Lamont 
et al., 2021) accurately detects WBCs and platelets; however, this technique is ineffective 
for locating the cytoplasm in WBCs. Furthermore, this approach fails to detect the edges 
of WBCs and platelets, whereas it detects bright pixels of RBCs.

Table 4 
Qualitative evaluation comparison of segmented images with state-of-the-art techniques

G chromaticity 
channel

The PCA fusion 
with chromatic 

feature

The PCA 
adaptive fusion 

method

Chromatic 
variance

Proposed method

The chromatic variance approach accurately detected the nuclei and cytoplasm of 
WBCs and platelets (García‐Lamont et al., 2022). However, it has limitations when utilized 
for sickle cell imaging because it identifies unwanted RBCs with bright regions. Table 5 
presents the quantitative analysis findings from the state-of-the-art techniques. The results 
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demonstrate that the proposed PSO approach has achieved an accuracy of 96.32%. These 
results show that the proposed method accurately identifies and segments overlapped 
WBC and platelets from smear images and has significantly improved performance. The 
analysis demonstrates that the proposed approach is highly efficient for recognizing and 
detecting WBCs and platelets while excluding RBCs from the segmentation, which resulted 
in efficiencies of the optimal threshold value. The experimental findings indicate that the 
proposed method efficiently identifies and segments the WBCs and platelets while excluding 
RBCs for the segmentation process. The proposed segmentation approach recognizes 
WBCs and platelets by examining chromaticity components using the advantages of 
significant pixel variance for accurate identification and differentiation. This method uses 
RG chromaticity and a parametric approach to determine the probability distribution for 
accurate segmentation. Variations in staining and lighting conditions can cause a challenge 
to blood cell segmentation, as shown by the erythrocytesIDB1 dataset. The first 130 images 
have different staining and lighting conditions than the final 59 images. Even with these 
variations, the proposed approach effectively responds to changes, and the segmentation 
accuracy is higher compared to previous studies, as seen in Table 5. Existing research has 
concentrated on segmenting WBCs into cropped images, which is not suitable for whole-
blood-smear images for cell segmentation. State-of-the-art techniques often fail to segment 
WBCs and platelets because of color illumination and variation problems. WBCs and 

Table 5 
Quantitative evaluation comparison of segmented images with state-of-the-art techniques

Method Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F- Score (%)
The PCA 
fusion with 
chromaticity 
method (Makem 
& Tiedeu, 2020)

77.30 80.56 80.20 72.58 81.41

The PCA-based 
adaptive fusion 
(Garcia-Lamont 
et al., 2021)

85.53 87.34 88.69 78.95 88.78

Chromatic 
variance 
(García‐Lamont 
et al., 2022)

82.28 86.73 85.00 77.59 85.86

Proposed 
approach with 
manual method

92.79 95.89 93.94 83.33 95.88

Proposed 
approach with 
an optimized 
method

96.32 96.96 96.97 94.59 97.46
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platelets are difficult to segment because of size differences and overlapping regions. Most 
existing approaches fail to segment platelets because they are small and often appear to be 
small elements in the image. This size differential and platelet overlapping significantly 
limit the implementation of a single technique for both WBCs and platelets. 

Existing chromaticity-based cell segmentation methods have demonstrated various 
levels of accuracy. PCA fusion based on chromatic attributes from HSV and CMYK color 
spaces achieved an accuracy of 77.30% because color values varied among the images, 
impairing RBC region detection. The PCA-based adaptive fusion approach, which utilizes 
RGB, HSV, and L*a*b* color spaces, obtained an accuracy of 85.53%. This approach 
accurately recognizes the nucleus but fails to detect very small platelets without separating 
the hue components from the color space. The chromatic variance approach, which 
employed the RGB color space, attained an 82.28% accuracy because of its inefficiency in 
segmenting WBC cytoplasm. The primary limitation of these approaches is their inability 
to achieve accurate segmentation across datasets with differences in lighting conditions and 
staining variances. However, the proposed method overcomes this challenge by utilizing RG 
chromaticity and a Particle Swarm Optimization-based approach to determine the optimal 
threshold for segmentation with 96.32% accuracy. Despite its limitations, the proposed 
approach efficiently addresses these challenges and provides precise segmentation. 

Furthermore, the proposed method achieved higher accuracy and sensitivity compared 
to existing methods, because the color component was included as a significant feature 
and an optimized technique for threshold-value identification. Compared to the traditional 
manual threshold process, the proposed method improves specificity by systematically 
optimizing the threshold, resulting in an accurate segmentation of the WBC nucleus and 
cytoplasm, as well as various-sized pixels of platelets. Based on an artificial intelligence 
perspective, the proposed approach is bioinspired and reflects how humans observe colors. 
Recent experiments on CNNs for WBC segmentation were effective; however, they usually 
required longer processing, but the suggested technique has the lowest computational cost. 
Moreover, implementing CNNs requires ground truth images for efficient segmentation 
training. However, the dataset used in this study did not contain ground truth annotations. The 
proposed method uses RG chromaticity images with parametric segmentation that involves 
mathematical operations to find the appropriate chromaticity channel for segmentation with 
a low computational time. The optimal distribution value for segmentation involves the 
search space optimization with a low computational cost. Therefore, overlapping WBCs 
and platelets were identified and segmented using the proposed method and are highly 
computationally competitive. This study has limitations because it focuses on image 
processing and optimization methodologies rather than implementing CNN-based deep 
learning models. These models commonly require ground truth annotations during the 
segmentation phase; however, this dataset fails to provide such annotations. This drawback 
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can be overcome by employing the segmented images generated by this method as ground 
truth annotations, allowing the integration of CNN-based segmentation algorithms to 
achieve more precision and accuracy.

CONCLUSION

Early diagnosis of SCD is essential for effective treatment, with accurate erythrocyte 
counts being important in both diagnosis and tracking the progression of the disease. 
Current cell counting methods misidentified WBCs and platelets as RBCs, resulting in 
inaccurate cell detection and false diagnosis. The proposed method uses high chromatic 
variance to find WBCs and platelets in blood smear images. This is performed by applying 
parametric segmentation to RG chromaticity and its separate channels to identify the 
WBCS and platelets pixels that display the highest contrast to the average color of the 
other blood smear components. The proposed method uses PSO-based optimization in the 
search space to identify the best threshold values for accurate segmentation. Moreover, 
chromaticity has been considered as a feature rather than separating color components 
through experimentation, which often occurs in state-of-the-art methods. In this experiment, 
the performance of the segmentation method was examined by comparing the WBCs and 
platelets using chromatic images as the ground truth. Previous methodologies segmented 
WBCs and platelets from separate experiments instead of within a single study. In 
comparison, the proposed method achieved a precision and sensitivity of 96.96% and 
96.97%, respectively, with a higher accuracy of 96.32%. In future work, CNNs will 
be used for automatic WBC and platelet segmentation. The segmented regions will be 
eliminated to increase the RBC counts for abnormality detection. This automation has the 
ability to enhance treatments and reduce the emphasis on manual interventions, thereby 
improving medical diagnosis accuracy and efficiency. This method can identify leukemia 
by determining the most effective chromaticity channel for improved WBC segmentation 
for disease identification. 
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